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Abstract

Few-shot object detection aims at detecting novel ob-
jects with only a few annotated examples. Prior works
have proved meta-learning a promising solution, and most
of them essentially address detection by meta-learning over
regions for their classification and location fine-tuning.
However, these methods substantially rely on initially well-
located region proposals, which are usually hard to obtain
under the few-shot settings. This paper presents a novel
meta-detector framework, namely Meta-DETR, which elim-
inates region-wise prediction and instead meta-learns ob-
ject localization and classification at image level in a uni-
fied and complementary manner. Specifically, it first en-
codes both support and query images into category-specific
features and then feeds them into a category-agnostic de-
coder to directly generate predictions for specific cate-
gories. To facilitate meta-learning with deep networks, we
design a simple but effective Semantic Alignment Mecha-
nism (SAM), which aligns high-level and low-level feature
semantics to improve the generalization of meta-learned
representations. Experiments over multiple few-shot object
detection benchmarks show that Meta-DETR outperforms
state-of-the-art methods by large margins.

1. Introduction

Computer vision has witnessed significant progress in re-
cent years. However, there still exists a huge gap between
current computer vision techniques and human visual sys-
tems in learning new concepts from very few examples:
most existing methods require large amounts of annotated
samples, while humans can effortlessly recognize a new
concept even with very little instruction [60, 55]. Such a
human-like capability of generalizing from limited exam-
ples is highly desirable for machine vision systems, espe-
cially when sufficient training samples are not available or
their annotations are hard to obtain [57, 14, 35, 20, 87, 19].

† denotes equal contribution.
∗ denotes corresponding author.

Figure 1. Upper: Most existing meta-detectors essentially per-
form region-wise predictions, which heavily rely on the quality of
initial region proposals that cannot be guaranteed under the few-
shot settings. Lower: The proposed Meta-DETR meta-learns ob-
ject localization and classification at image level in a unified and
complementary manner (without region-wise prediction), leading
to superior few-shot object detection performance.

In this work, we explore the challenging few-shot object
detection task, which requires both recognition and local-
ization of novel objects within an image. Prior works [22,
46, 74, 81, 10, 80] have proved meta-learning a promising
solution. As illustrated in the upper part of Fig. 1, they
essentially address object detection by performing meta-
learning over regions, including region proposals [81, 80],
anchors [22], and window centers [46], for their classifica-
tion and location fine-tuning. However, as identified in [10]
and [91], these methods rely heavily on the quality of initial
region proposals, which cannot be guaranteed in the few-
shot setups with scarce training samples, thus producing in-
accurate or missed detection. Though FSOD [10] proposes
to meta-learn the generation of region proposals, this issue
remains as the framework is still inherently region-based.
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Figure 2. Comparison of existing few-shot detectors with our Meta-DETR. Dashed blue boxes indicate meta-learning components. ⊗
indicates feature aggregation. Unlike prior works that rely on region-wise predictions, Meta-DETR unifies the meta-learning of object
localization and classification at image level with a single meta-learning module.

Based on the analysis above, a key limitation rooted
in existing meta-detectors is the region-wise prediction ap-
proach. Besides, under the challenging settings of few-shot
object detection where supervision from annotated exam-
ples is minimal, the complementary effect between classi-
fication and localization (as demonstrated in [93, 78, 53])
should be maximally exploited. Therefore, an ideal meta-
detector should discard such region-based prediction and ef-
fectively leverage the synergistic relationship between clas-
sification and localization by meta-learning both sub-tasks
in a fully end-to-end manner. However, such a framework
is still absent to the best of our knowledge.

Recently, the emergence of fully end-to-end detection
frameworks [2, 96] clears the way to such a framework.
This paper presents Meta-DETR, a novel region-free frame-
work for few-shot object detection that meta-learns image-
level localization and classification in a unified and comple-
mentary manner. Concretely, it incorporates meta-learning
into the DETR frameworks [2, 96] by first encoding support
and query images into category-specific features and then
feeding them into a category-agnostic decoder to directly
generate detection results for the target categories. To facil-
itate meta-learning with deep networks, we design a simple
but effective Semantic Alignment Mechanism (SAM) that
aligns high-level and lower-level feature semantics and pre-
vents reliance on category-specific representations with low
generalization capability.

The contributions of this work are threefold. First,
we propose Meta-DETR, a novel few-shot object detection
framework that unifies image-level meta-learning of object
localization and classification into a single module without
requiring region-wise prediction. Such a design can effec-
tively leverage the synergistic relationship between the two
sub-tasks and avoid constraints caused by region-wise pre-
diction. Second, we design a simple but effective Semantic
Alignment Mechanism (SAM) that enhances the general-

ization capacity of meta-learning by aligning high-level and
low-level semantics to avoid reliance on category-specific
representations. Third, extensive experiments show that our
method achieves state-of-the-art performance on multiple
benchmarks for few-shot object detection.

2. Related Work

Object Detection. Generic object detection [38] is a joint
task on object localization and classification. Modern object
detectors can be broadly classified into two categories in-
cluding two-stage detectors and single-stage detectors. The
dominant two-stage detectors are Faster R-CNN [52] and its
variants [21, 1, 31, 58, 59, 7, 89, 17, 82, 49], which first
adopt a Region Proposal Network (RPN) to generate re-
gion proposals as coarse localization and then perform per-
region classification and location fine-tuning. Differently,
single-stage detectors [41, 51, 26, 33, 95, 70, 90, 40] em-
ploy densely placed anchors as region proposals and di-
rectly make predictions on them. These aforementioned
methods still rely on many heuristics like anchor generation.
Recently, DETR [2] and its variants [96, 6, 63, 32, 92] have
received vast attention thanks to their merits of no heuristic
design, fully end-to-end pipeline, and comparable or even
better performance. However, these detectors still heavily
rely on human supervision in the form of large amounts of
annotated training samples, thus will suffer from huge per-
formance drop in the context of few-shot learning.

Few-Shot Learning. Few-shot learning aims at bridg-
ing the gap between existing models and human intelli-
gence in learning novel concepts from very few samples.
One promising solution is meta-learning [18, 66], which
aims to extract meta-level knowledge that can generalize
across various tasks via ‘learning to learn’. Extensive re-
searches [11, 68, 61, 64, 12, 44, 4, 43, 27, 62, 73, 56, 50,
79, 47, 8, 83, 5, 28, 36, 39] have proved the effectiveness
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Figure 3. The architecture of our proposed Meta-DETR. It consists of a Query Encoding Branch (QEB), a Support Encoding Branch
(SEB), and a Decoding Branch (DB). QEB receives a query image and generates its query features through a feature extractor and a
transformer encoder. SEB, which shares all learnable parameters with QEB, extracts support category codes from the support images.
Given the query features with a support category code, DB first aggregates them into category-specific features and then applies a category-
agnostic transformer decoder to predict the detection results over the corresponding support category.

of the meta-learning paradigm for the few-shot classifica-
tion task. However, other more complex few-shot learn-
ing tasks [65, 13, 45, 75, 69, 71] are still relatively under-
explored.

Few-Shot Object Detection. Prior works on few-shot ob-
ject detection can be formulated in two paradigms: transfer-
learning-based and meta-learning-based. Methods using
transfer-learning include LSTD [3], PNPDet [88], TFA [72],
and MPSR [76], where novel concepts are learned via fine-
tuning. Differently, methods using meta-learning extract
meta-level knowledge that can efficiently adapt to novel
categories by constructing and learning on various auxil-
iary tasks, in which target categories are dynamically con-
ditioned on support images. Of them, Meta-YOLO [22] and
ONCE [46] are based on single-stage detectors, and Meta
R-CNN [81] and its variants [77, 74, 23, 30, 80, 37] are built
upon Faster R-CNN [52]. As shown in Fig. 2, existing meta-
detectors essentially perform region-wise meta-learning,
thus requiring initially well-located regions. However, such
well-located regions for novel objects are usually hard to
obtain with non-learnable shape priors and fine-tuned RPN
when training samples are scarce. FSOD [10] attempts to
mitigate this issue by meta-learning an Attention-RPN, but
the issue remains as this framework and Attention-RPN are
still innately region-based.

Our Meta-DETR follows the track of meta-learning. Un-
like previous works, it discards region-wise prediction and
instead unifies the meta-learning of localization and classifi-
cation at image level with a category-agnostic decoder, thus
leveraging global contexts and the synergistic relationship
of the two sub-tasks to achieve superior performance.

3. Method
3.1. Problem Definition

Given two sets of categories Cbase and Cnovel, where
Cbase ∩ Cnovel = ∅, a few-shot object detector aims at de-
tecting objects of Cbase ∪ Cnovel by learning from a base
dataset Dbase with abundant annotated instances of Cbase
and a novel dataset Dnovel with very few annotated in-
stances of Cnovel. In the task of K-shot object detection,
there are exactly K annotated object instances for each
novel category in Dnovel.

3.2. Meta-DETR

3.2.1 Revisiting DETR Frameworks

Modern detectors like Faster R-CNN [52] address object
detection by performing the surrogate task of classification
and location fine-tuning on a number of regions. Such de-
tectors require many heuristics and are not fully end-to-end.
Recently, DETR [2] eliminates the need for such heuris-
tic designs and achieves the first fully end-to-end detec-
tion framework. It is built upon the Transformer encoder-
decoder architecture [67], combined with a set-based Hun-
garian loss that forces unique predictions for each object via
bipartite matching. Besides, Deformable DETR [96] further
extends DETR by mitigating its high complexity and slow
convergence issue.

Meta-DETR extends the DETR frameworks [2, 96] by
incorporating meta-learning into such fully end-to-end de-
tection frameworks. Its innovative designs can help evade
various issues such as the constraint of region-wise predic-
tion under the context of few-shot object detection.
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3.2.2 Network Description

Aiming at performing unified meta-learning for local-
ization and classification at image level, our Meta-DETR
is conceptually simple. As shown in Fig. 3, it consists
of a Query Encoding Branch (QEB), a Support Encoding
Branch (SEB), and a Decoding Branch (DB). Given a Query
Image and several Support Images with instance annota-
tions, QEB and SEB first encode them into Query Fea-
tures and Category Codes, respectively. DB then takes the
query features and category codes as input and predicts De-
tection Results over the corresponding support categories.
As target categories to detect are dynamically conditioned
on the provided support images, Meta-DETR is able to ex-
tract category-agnostic meta-level knowledge that can eas-
ily adapt to novel categories.

Query Encoding Branch (QEB). The design of QEB fol-
lows Deformable DETR [96] except for a residual connec-
tion that will be introduced later. As illustrated in Fig. 3, it
mainly consists of a feature extractor and a transformer en-
coder. Given a query image, the feature extractor (a CNN
backbone such as ResNet [16]) generates its feature maps
and then adopts 1×1 convolution to make the feature maps’
channel dimension compatible with the downstream mod-
ules. Since the transformer encoder expects a sequence as
input, we first inject positional encoding into the feature
maps, collapse the feature maps’ spatial dimensions into
one dimension, and then feed them into the transformer en-
coder to produce the query features.

Support Encoding Branch (SEB). SEB shares all learn-
able parameters with QEB following the philosophy of
Siamese Networks [25]. Unlike QEB that preserves image-
level information within the query features, SEB aims at ex-
tracting category codes that mostly relate to certain object
instances within the support images. We, therefore, intro-
duce a Category Code Extractor (CCE) to filter out irrele-
vant information within the support images. CCE has no
learnable parameters. It derives support category codes via
three sequential operations: 1) restoring the features’ spatial
dimension from the transformer encoder, 2) locating sup-
port object instances with RoIAlign [15], and 3) global av-
erage pooling followed by a sigmoid function. When there
are multiple support images for a category, it averages all
category codes as the final category code.

Decoding Branch (DB). DB receives the outputs of QEB
and SEB and produces object detection results, and its tar-
get categories are dynamically determined by the category
codes. Concretely, it aggregates the query features and cat-
egory codes into a set of category-specific features. The
design of aggregator follows previous work [80]. A trans-
former decoder with a feed-forward network (FFN, omitted
in Fig. 3 for simplicity) then takes the category-specific fea-
tures and a small fixed number of object queries as input

Transformer Encoder Transformer Encoder

Lower-Level

Semantics
Red? Blue? …

Round? Rectangular? …

Smooth? Furry? …

High-Level

Semantics
Cat? Dog? …

Car? Motorbike? …

Person? Boat? …

w/o Semantic Alignment w/ Semantic Alignment

Figure 4. Semantic Alignment Mechanism. A simple residual
connection acts as self-regularization to prevent the transformer
encoder from relying on undesirable category-specific features by
aligning the feature semantics of its input and output.

and produces detection results over the corresponding cat-
egories. Similar to the decoder in DETR frameworks, DB
eliminates region-wise prediction and addresses object de-
tection at image level. However, DB is category-agnostic
with no intention to detect objects of specific categories.
Such unique design enables joint meta-learning of object lo-
calization and classification at image level, which can avoid
potential issues with region-wise prediction and achieve su-
perior few-shot detection performance.

Semantic Alignment Mechanism (SAM). Meta-learning
has been proved promising for few-shot learning. Its ma-
jor motivation is to obtain meta-level knowledge that can
generalize to various categories instead of focusing on spe-
cific categories. However, most works [27, 4, 29, 83, 86]
perform meta-learning on relatively shallow networks, such
as ResNet-12 and ResNet-18. There is also evidence [94,
12, 4, 48] that meta-learning a deeper network from scratch
performs comparable or even worse than without meta-
learning. One possible reason is that, even with meta-
learning, deeper networks still tend to learn and rely on
category-specific semantics with poor generalization un-
desirably. To mitigate this issue, we propose to incorpo-
rate a simple but effective Semantic Alignment Mechanism
(SAM), which is essentially a residual connection as illus-
trated in Fig. 4, into the proposed Meta-DETR.

The motivation behind SAM is simple and straight-
forward. As observed in the feature visualization litera-
ture [85, 84], features from bottom layers relate to low-level
cues such as colors and shapes that have better generaliza-
tion; while features from top layers relate to more complex
and specific concepts such as categories. To avoid reliance
on such high-level category-specific features, SAM incor-
porates a shortcut connection to bypass the transformer en-
coder, which works as self-regularization to guide the fea-
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ture semantics from the transformer encoder to align with
its input feature semantics with better generalization.

It is worth mentioning that the motivation behind SAM
is very different from the residual connections that have
been widely used in various neural network architectures.
The residual connections in ResNet [16] only bypass several
convolutional layers and aim at improving the gradient flow
and solving the gradient vanishing issue when training very
deep neural networks. Meta-DETR does not suffer from
gradient vanishing as its transformer [67] building blocks
already incorporate such residual connections. In contrast,
the residual connection used in SAM bypasses the entire
transformer encoder, aiming to align its outputs’ feature se-
mantics with its inputs’, thus acting as self-regularization to
prevent reliance on category-specific semantics.

3.2.3 Training Objective

Detection Target Generation. Assume the fixed number
of object queries is N , which means Meta-DETR infers
N predictions over each category in a single pass through
the decoder. Let us denote by xquery the query image, and
y = {yi}Ni=1 = {(ci, bi)}

N
i=1 the ground truth set of objects

within the query image, which is a set of size N . When yi
indicates an object, yi = (ci, bi), where ci denotes the tar-
get category label and bi denotes the bounding box of the
object. When yi indicates no object, yi=(∅,∅).

Meta-DETR dynamically conditions its detection targets
on support images. Given a support image xsupp along with
its object annotation (csupp, bsupp), the detection targets are
defined as:

y′ = {y′i}
N
i=1 = {(c′i, b′i)}

N
i=1 = {ψ(yi, csupp)}Ni=1 (1)

where ψ(yi, csupp) acts to filter irrelevant object annota-
tions, which can be formulated as:

ψ(yi, csupp) =


(∅,∅), if yi = (∅,∅)

(∅,∅), if ci 6= csupp .

(1, bi), if ci = csupp

(2)

Note that y′ can completely consist of (∅,∅). In this case
we call csupp a negative target category.

Loss Function. Assume the N predictions for target cate-
gory made by Meta-DETR are ŷ={ŷi}Ni=1=

{
(ĉi, b̂i)

}N
i=1

.
We adopt a pair-wise matching loss Lmatch(y

′
i, ŷσ(i)) to

search for a bipartite matching between ŷ and y′ with the
lowest cost:

σ̂ = argmin
σ

∑N

i=1
Lmatch(y

′
i, ŷσ(i)) (3)

where σ denotes a permutation of N elements, and σ̂ de-
notes the optimal assignment between predictions and tar-
gets. Since the matching should consider both classification

and localization, the matching loss is defined as:

Lmatch(y
′
i, ŷσ(i)) =1{c′i 6=∅}Lcls(c

′
i, ĉσ(i))+

1{c′i 6=∅}Lbox(b
′
i, b̂σ(i)) .

(4)

With the optimal assignment σ̂ obtained with Eq. 3 and
Eq. 4, we optimize the network using the following loss
function:

L(y′, ŷ)=
N∑
i=1

[
Lcls(c

′
i, ĉσ̂(i)) + 1{c′i 6=∅}Lbox(b

′
i, b̂σ̂(i))

]
(5)

where we adopt sigmoid focal loss [33] for Lcls and a linear
combination of `1 loss and GIoU loss [54] for Lbox. Sim-
ilar to [2] and [96], L(y′, ŷ) is applied to each layer of the
transformer decoder.

Following [81], we also adopt a conventional cross-
entropy loss, denoted as LSEB, to classify the category
codes produced by SEB. This encourages category codes
that belong to different categories to be distinguished from
each other.

3.2.4 Training and Inference Scheme

The training procedure consists of two stages. The first
stage is base training stage. During this stage, the model
is trained on the base dataset Dbase with abundant training
samples for each base category. The second stage is few-
shot fine-tuning stage. In this stage, we train the model on
both base and novel categories with limited training sam-
ples. Only K object instances are available for each novel
category inK-shot object detection. Following [72, 81, 80],
we also include several object instances for each base cat-
egory to prevent performance drop for base categories. In
both stages, we optimize the network in an end-to-end man-
ner using the loss functions described in Section 3.2.3.

In both training stages, multiple auxiliary tasks, also
known as episodes, are formed to train the proposed Meta-
DETR. Specifically, each episode contains one query im-
age and 10 support images representing different target cat-
egories to detect. Target categories include both positive
categories and negative categories. Support images are ran-
domly sampled from the training dataset.

Before inference, we first use SEB to obtain the category
codes for all categories once and for all. For each category,
if there are multiple support images, we average all corre-
sponding category codes as the final category code. After
acquiring the category codes, SEB can be detached. During
inference, Meta-DETR does not need to repeatedly compute
category codes as in the training stage, which promises the
efficient inference of Meta-DETR.
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Category Split 1 Category Split 2 Category Split 3

Method multi-scale 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full [52, 72] X 15.2 20.3 29.0 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
D-DETR-ft-full [96] † X 5.6 13.3 21.7 34.2 45.0 10.9 13.0 18.4 27.3 39.4 7.3 16.6 20.8 32.2 41.8

LSTD [3] X 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
RepMet [56] X 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2

TFA w/ fc [72] † X 22.9 34.5 40.4 46.7 52.0 16.9 26.4 30.5 34.6 39.7 15.7 27.2 34.7 40.8 44.6
TFA w/ cos [72] † X 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6

MPSR [76] † X 34.7 42.6 46.1 49.4 56.7 22.6 30.5 31.0 36.7 43.3 27.5 32.5 38.2 44.6 50.0
Meta-YOLO [22] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

Meta Det [74] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [81] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
FsDetView [80] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

Meta-DETR (Ours) 17.5 36.0 45.1 51.2 57.1 18.5 27.5 34.7 41.1 49.8 15.4 32.6 39.4 49.0 54.3
Meta-DETR (Ours) X 20.4 35.0 46.3 52.2 57.8 20.2 30.9 38.2 44.0 52.6 22.8 34.9 43.0 50.2 54.9

Table 1. Few-shot detection performance (mAP@0.5) on Pascal VOC test 07 set for novel categories. Results are averaged over multiple
repeated runs with different randomly sampled support datasets. † indicates results are re-evaluated using official codes for multiple runs
since original results are evaluated with a single run.

4. Experiments
4.1. Datasets

We follow the data setups of prior works for few-shot
object detection [22, 74, 81, 72, 80, 76]. Concretely, two
widely used few-shot object detection benchmarks are eval-
uated in our experiments.

Pascal VOC [9] consists of images with object anno-
tations of 20 categories. We use trainval 07+12 for train-
ing and perform evaluations on test 07. Following [22, 81,
72, 80], we use 3 novel / base category splits, i.e., (“bird”,
“bus”, “cow”, “motorbike”, “sofa” / others); (“aeroplane”,
“bottle”,“cow”,“horse”,“sofa” / others) and (“boat”, “cat”,
“motorbike”,“sheep”, “sofa” / others). The number of shots
is set to 1, 2, 3, 5 and 10. Mean average precision (mAP) at
IoU threshold 0.5 is used as the evaluation metric. Results
are averaged over 10 randomly sampled support datasets.

MS COCO [34] is a more challenging object detection
dataset, which contains 80 categories including those 20
categories in Pascal VOC. We adopt the 20 shared cate-
gories as novel categories, and adopt the remaining 60 cate-
gories in MS COCO dataset as base categories. The number
of shots is 10 and 30. We use train 2017 for training, and
perform evaluations on val 2017. Standard evaluation met-
rics for MS COCO are adopted. Results are averaged over
5 randomly sampled support datasets.

4.2. Implementation Details

We adopt commonly used ResNet-101 [16] as the feature
extractor in both QEB and SEB. The network architectures
and hyper-parameters of transformer encoder and decoder
remain the same as Deformable DETR [96]. The feed-
forward network (FFN) after the transformer decoder is a
3-layer MLP for box prediction and a 1-layer MLP for ob-

Shot Method multi-scale Base Novel

3

LSTD [3] X 66.3 12.4
TFA w/ cos [72] † X 77.3 42.1

MPSR [76] † X 65.9 46.1
Meta-YOLO [22] 64.8 26.7
Meta R-CNN [81] 64.8 35.0
Meta-DETR (Ours) 65.2 45.1
Meta-DETR (Ours) X 66.5 46.3

10

LSTD [3] X 66.3 38.5
TFA w/ cos [72] † X 77.5 52.8

MPSR [76] † X 69.8 56.7
Meta-YOLO [22] 63.6 47.2
Meta R-CNN [81] 67.9 51.5
Meta-DETR (Ours) 67.1 57.1
Meta-DETR (Ours) X 67.4 57.8

Table 2. Few-shot detection performance (mAP@0.5) for base and
novel categories on category split 1 of Pascal VOC. Results are
averaged over multiple runs. † indicates re-evaluated results.

ject confidence prediction. Thanks to the multi-scale atten-
tion module introduced in Deformable DETR [96], Meta-
DETR supports multi-scale features as input by nature with-
out any modification. For a comprehensive comparison, we
present results of Meta-DETR with both single-scale and
multi-scale features in benchmarking. For ablation study,
we only adopt the single-scale setting for Meta-DETR.

We train our model using the AdamW [24, 42] optimizer
with an initial learning rate of 2×10−4 and a weight de-
cay of 1× 10−4. We adopt a batch size of 32 and each
query image is associated with 10 support images to form
an episode. Conventional data augmentation as used in
[2, 96] is adopted during training. In the base training stage,
we train the model for 100 epochs for Pascal VOC and 50
epochs for MS COCO. Learning rate is decayed at the 85th

and 40th epoch by a factor of 0.1, respectively. In the few-
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Average Precision Average Recall
Shot Method multi-scale AP0.5:0.95 AP0.5 AP0.75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

10

LSTD [3] X 3.2 8.1 2.1 0.9 2.0 6.5 7.8 10.4 10.4 1.1 5.6 19.6
TFA w/ fc [72] † X 9.1 17.3 8.5 - - - - - - - - -

TFA w/ cos [72] † X 9.1 17.1 8.8 - - - - - - - - -
MPSR [76] X 9.8 17.9 9.7 3.3 9.2 16.1 15.7 21.2 21.2 4.6 19.6 34.3

Meta-YOLO [22] 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2
Meta Det [74] 7.1 14.6 6.1 1.0 4.1 12.2 11.9 15.1 15.5 1.7 9.7 30.1

Meta R-CNN [81] 8.7 19.1 6.6 2.3 7.7 14.0 12.6 17.8 17.9 7.8 15.6 27.2
FSOD [10] † 12.0 22.4 11.8 2.9 12.2 20.7 18.8 26.4 26.4 3.6 23.6 45.6

FsDetView [80] 12.5 27.3 9.8 2.5 13.8 19.9 20.0 25.5 25.7 7.5 27.6 38.9
Meta-DETR (Ours) 16.7 29.0 17.1 2.7 13.7 27.0 19.6 30.4 32.7 7.7 29.3 52.8
Meta-DETR (Ours) X 17.8 28.8 18.5 3.3 14.0 29.3 21.0 32.2 34.1 7.9 29.9 56.0

30

LSTD [3] X 6.7 15.8 5.1 0.4 2.9 12.3 10.9 14.3 14.3 0.9 7.1 27.0
TFA w/ fc [72] † X 12.0 22.2 11.8 - - - - - - - - -

TFA w/ cos [72] † X 12.1 22.0 12.0 - - - - - - - - -
MPSR [76] X 14.1 25.4 14.2 4.0 12.9 23.0 17.7 24.2 24.3 5.5 21.0 39.3

Meta-YOLO [22] 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5
Meta Det [74] 11.3 21.7 8.1 1.1 6.2 17.3 14.5 18.9 19.2 1.8 11.1 34.4

Meta R-CNN [81] 12.4 25.3 10.8 2.8 11.6 19.0 15.0 21.4 21.7 8.6 20.0 32.1
FsDetView [80] 14.7 30.6 12.2 3.2 15.2 23.8 22.0 28.2 28.4 8.3 30.3 42.1

Meta-DETR (Ours) 21.3 36.0 22.0 3.8 17.8 35.5 22.2 33.8 36.3 9.1 34.0 59.0
Meta-DETR (Ours) X 22.9 35.8 23.8 4.7 20.9 36.5 23.3 36.0 38.4 12.5 36.0 59.9

Table 3. Few-shot detection performance on MS COCO val 2017 set for novel categories. Results are averaged over multiple repeated runs
with different randomly sampled support datasets. † indicates results are re-evaluated using official codes for multiple runs since original
results are evaluated with a single run.

shot fine-tuning stage, the same settings (excluding the total
number of epochs and the learning rate decay epochs) are
applied to train the model until full convergence.

4.3. Comparison with State-of-the-Art Methods

Pascal VOC. Table 1 shows the few-shot detection perfor-
mance for novel categories of Pascal VOC. It can be seen
that Meta-DETR outperforms existing methods for most
cases except when training samples are extremely scarce.
We conjecture that the unsatisfactory performance for ex-
tremely low-shot settings is largely attributed to the large
search space that comes with Meta-DETR’s image-level
prediction, which may lead to overfitting when training
samples are extremely insufficient. However, when there
are slightly more training samples for novel categories, e.g.,
3-shot, 5-shot, and 10-shot, Meta-DETR performs signifi-
cantly better across all category splits. Such experimental
results demonstrate the superior robustness and generaliza-
tion capability of our method.

Table 2 shows experimental results while taking base
categories into consideration. While achieving good perfor-
mance for novel categories with limited training samples,
Meta-DETR can still detect objects of base categories with
competitive performance. TFA [72] produces outstanding
performance for base categories since it works more like
conventional detectors with fine-tuning, thus having con-
strained capacity in generalizing on novel categories.

MS COCO. Table 3 shows experimental results on MS
COCO. It can be seen that, although MS COCO is more
challenging with higher complexity like occlusions and
large scale variations, Meta-DETR still outperforms all ex-
isting methods for all setups by even larger margins. Specif-
ically, on the primary metric AP0.5:0.95, Meta-DETR out-
performs state-of-the-art methods by 5.3% for 10-shot and
8.2% for 30-shot. On the strict metric AP0.75, Meta-DETR
almost doubles the state-of-the-art method’s performance
from 9.8% to 18.5% for 10-shot and from 12.2% to 23.8%
for 30-shot. This demonstrates Meta-DETR’s precise local-
ization, which is largely attributed to the unified image-level
meta-learning that exploits the synergistic effects of local-
ization and classification. Besides, Meta-DETR achieves
the best performance for objects of all scales, especially for
large objects, largely because Meta-DETR exploits global
contexts via image-level predictions effectively.

Except for Average Precision (AP) that directly mea-
sures the performance of a detector, Average Recall (AR) is
also an important metric. Higher AR indicates less missed
detection. As shown in Table 3, Meta-DETR also outper-
forms the state-of-the-art by large margins regarding AR100

(+8.4% for 10-shot and +10.0% for 30-shot). It is note-
worthy that FSOD [10] achieves the highest AR100 among
the region-based counterparts, thanks to its meta-learning-
based AttentionRPN that generates more accurate region
proposals. However, FSOD still suffers from inaccurate or
missed detection as it is fundamentally region-based, rely-
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Design Choice Shot

CCE SAM LSEB 1 3 10

X X 11.6 37.6 54.2
X 15.1 39.6 53.2
X X 15.8 40.4 53.4
X X 17.2 43.0 56.7
X X X 17.5 45.1 57.1

Table 4. Ablation studies over several design choices of Meta-
DETR. Results for novel categories are averaged over multiple
runs on the category split 1 of Pascal VOC.

Query Image Bird (Novel) Cat (Base)

w/o

SAM

w/

SAM

Figure 5. Visualization of correlations between query features and
category codes. With semantic alignment mechanism (SAM) in-
troduced, clear responses for both base category (cat) and novel
category (bird) are observed, demonstrating SAM’s effectiveness
in enhancing generalization of meta-learned representations.

ing on high-quality region proposals that are hard to obtain
under the few-shot scenarios. In contrast, Meta-DETR fully
eliminates region-wise prediction and makes predictions at
image level, thus avoiding this constraint and achieving su-
perior performance.

4.4. Ablation Study
We design extensive ablation experiments to study how

our designed technical components contribute to the overall
few-shot object detection performance.
Effect of Category Code Extractor (CCE). We introduce
CCE into SEB to extract object-level instead of image-level
information for generating category codes, thus solving the
task mismatch issue between the two encoding branches.
Another strategy adopted by prior works [22, 81, 80] is to
directly use support images with an extra channel represent-
ing objects’ locations as input. As shown in Table 4, CCE
achieves better performance, which shows CCE can effec-
tively filter out redundant information and generate more
accurate category codes compared with previous strategy.
Effect of Semantic Alignment Mechanism (SAM). Meta-
learning does not aim to learn specific categories. How-
ever, with a limited number of base categories, it still
inevitably learns category-specific features that only per-
form well on certain categories and fail to generalize to
novel categories. As shown in Table 4, SAM consistently
boosts few-shot detection performance for novel categories,
which demonstrates its effectiveness in preventing reliance
on category-specific features. In Fig. 5, we further visualize

Transfer-Learning Meta-Learning Shot

cls loc cls loc 1 3 10

X X 5.4 21.0 44.8
X X 11.0 33.9 53.9

X X 9.8 32.5 52.7

Unified Meta-Learning for cls & loc 17.5 45.1 57.1

Table 5. Ablation studies over the effect of unified meta-learning.
Results for novel categories are averaged over multiple runs on the
category split 1 of Pascal VOC.

the attention maps of correlations between query features
and category codes. Without SAM, our method produces
strong responses for the base category (cat) with the learned
category-specific features, while failing to produce clear re-
sponses for the novel category (bird). With SAM included,
clear responses are produced for both base and novel cat-
egories, which implies that more generalizable representa-
tions are learned effectively.
Effect of LSEB. We introduce LSEB, which is essentially
a conventional cross-entropy loss, to classify the category
codes of different categories for better discrimination. As
shown in Table 4, LSEB slightly but consistently boosts the
performance. When there are relatively more training sam-
ples for novel categories (10-shot), the performance gain
brought by LSEB is marginal, which means Meta-DETR al-
ready can discriminate novel categories even without LSEB.
Effect of Unified Meta-Learning. We also study the effect
of unified meta-learning in Table 5. Specifically, we make
modifications to Meta-DETR to perform separated learn-
ing for localization and classification, the two sub-tasks
of object detection. Detailed architectures for this study
are presented in appendices. As shown in Table 5, uni-
fied meta-learning significantly outperforms other design
choices, which proves the synergistic effect of the two sub-
tasks. Interestingly, separate meta-learning for both sub-
tasks performs slightly worse than meta-learning classifica-
tion alone. This can be attributed to the intrinsic difficulty
in meta-learning image-level localization with no support
from the classification task.

5. Conclusion

This paper presents Meta-DETR, a novel few-shot object
detection framework that unifies the meta-learning of ob-
ject localization and classification at image level. By elimi-
nating the region-wise prediction that is problematic in the
few-shot scenarios and effectively leveraging the synergistic
relationship between localization and classification, it over-
comes the common weaknesses rooted in existing methods.
Extensive experiments validate that Meta-DETR establishes
new state-of-the-art and outperforms prior works by large
margins without bells and whistles.

8



References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: Delv-

ing into high quality object detection. In CVPR, 2018. 2
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 2,
3, 5, 6

[3] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. LSTD:
A low-shot transfer detector for object detection. In AAAI,
2018. 3, 6, 7

[4] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang,
and Jia-Bin Huang. A closer look at few-shot classification.
In ICLR, 2019. 2, 4

[5] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and
Trevor Darrell. A new meta-baseline for few-shot learning.
ArXiv, 2003.04390, 2020. 2

[6] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen.
UP-DETR: Unsupervised pre-training for object detection
with transformers. In CVPR, 2021. 2

[7] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai
Lu. Learning RoI transformer for oriented object detection
in aerial images. In CVPR, 2019. 2

[8] Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Diver-
sity with cooperation: Ensemble methods for few-shot clas-
sification. In ICCV, 2019. 2

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes
(VOC) Challenge. International Journal of Computer Vi-
sion, 88(2):303–338, 2010. 6

[10] Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-
shot object detection with attention-RPN and multi-relation
detector. In CVPR, 2020. 1, 3, 7

[11] Chelsea Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. In ICML,
2017. 2

[12] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, 2018. 2, 4

[13] Liang-Yan Gui, Yu-Xiong Wang, D. Ramanan, and José
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6. Appendix

This section provides more details of our proposed
method and experimental setups, which are omitted in the
main paper due to space limitation.

6.1. Detailed Architecture of Meta-DETR

The transformer encoder and decoder in the proposed
Meta-DETR have similar setups as Deformable DETR [96].
Concretely, both transformer encoder and decoder have 6
layers and adopt the multi-scale deformable attention mod-
ule [96] as their attention mechanism. The channel di-
mension is 256, and the intermediate dimension of fully-
connected layers (FC) inside the transformer is 1024. The
dropout probability, number of attention heads, and number
of object queries are set at 0.1, 8, and 300, respectively.

Fig. 6 shows the architecture of the Aggregator inside the
Decoding Branch (DB). The architecture has similar design
as FsDetView [80], except that the query features represent
whole-image rather than region-level information. Aggre-
gation is conducted between category codes and each posi-
tion of query features. Fig. 7 illustrates the feed-forward
network (FFN) in Decoding Branch (DB) that produces
final predictions (omitted for simplicity in Fig. 3 in the
manuscript). It consists of a 1-layer MLP for confidence
prediction and a 3-layer MLP for box prediction. FFN is
shared for all the embeddings that are generated from the
transformer decoder.

6.2. Modified Meta-DETR for Ablation Study

In Section 4.4, we modified the proposed Meta-DETR
to study the effect of unified meta-learning. In Table 5,
transfer-learning means that the specific sub-tasks (clas-
sification or localization, or both) are learned via naive
fine-tuning strategy. Separated meta-learning means that
the specific sub-tasks are learned via a standalone meta-
learning-based component. To achieve this, we move the
Aggregator after the transformer decoder and perform fea-
ture aggregation between category codes and the embed-
dings generated from the transformer decoder. Therefore,
FFN becomes meta-learning-based components for specific
sub-tasks, which manages to disentangle the meta-learning
for the two sub-tasks. This design enables us to explore the
effect of unified meta-learning.

6.3. Detailed Training and Inference Setups

Base Training Stage. All essential setups are provided in
Section 4.2. For further details, please refer to our codes.

Few-Shot Fine-Tuning Stage. The few-shot fine-tuning
stage shares the same setups as the base training stage, ex-
cept for the total number of epochs and the learning rate
decay epochs. Such differences are due to the significantly
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FC+ReLU C FC+ReLU

Category-Specific

Features

Element-Wise Multiplication

Element-Wise Subtraction
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Figure 6. Illustration of the detailed architecture of Aggregator in
Decoding Branch (DB). Aggregation is performed between cate-
gory codes and each position of query features.

FC

ReLU

FC

ReLU

FC

Sigmoid

FC + Sigmoid

Embeddings from 

transformer decoder

Feed-Forward Network (FFN)

Confidence

Box (x1, y1, x2, y2)

Figure 7. Illustration of the feed-forward network (FFN) in Decod-
ing Branch (DB) to produce final predictions. FFN is shared for
all the embeddings generated from the transformer decoder.

Setups Pascal VOC MS COCO

1 2 3 5 10 10 30

Total Epochs 700 600 600 500 500 500 500
Decay Epochs 600 500 500 425 425 425 425

Table 6. Setups of total number of epochs and learning rate decay
epochs for the few-shot fine-tuning stage.

smaller number of training samples under the few-shot sce-
narios, so that more training epochs are required to reach
full convergence. Detailed setups are presented in Table 6.
These numbers are empirically set solely based on the train-
ing loss trajectory, so we expect further performance gain if
comprehensive hyper-parameter search is conducted.

Inference. Given a query image, Meta-DETR produces 300
predictions for each category when performing inference.
However, both Pascal VOC and MS COCO accept only 100
predictions per image. We choose the top-scored 100 pre-
dictions across all categories as the final predictions.

6.4. Evaluation Metrics

Pascal VOC. For Pascal VOC, mean average precision
(mAP) at IoU threshold 0.5 is used as the evaluation metric.
In the context of few-shot object detection, mAP is averaged
over all novel categories.
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Method single-scale multi-scale

Deformable DETR [96] 17.8 FPS 11.3 FPS
Meta-DETR (Ours) 11.0 FPS 5.3 FPS

Table 7. Inference speed comparison. Results are obtained using
NVIDIA GeForce RTX 2080Ti GPU with single batch size on Pas-
cal VOC.

MS COCO. MS COCO’s standard metrics are used for
evaluation. Specifically, AP0.5:0.95 is the primary met-
ric that directly measures detectors’ performance, which
adopts 10 different IoU thresholds to reward detectors with
better localization. Standard metrics also include AP0.5 and
AP0.75, which correspond to the Pascal VOC metric and a
more strict metric, respectively. In addition to average pre-
cision (AP), average recall (AR) also serves as an impor-
tant evaluation metric, which measures the percentage of
detected objects among all ground truth objects. Higher AR
indicates less missed detection. Concretely, AR1, AR10,
and AR100 correspond to AR given 1 detection per image,
10 detections per image, and 100 detections per image, re-
spectively. The MS COCO metrics also evaluate the per-
formance for objects of different sizes (small, medium, and
large), including APS, APM, APL, ARS, ARM, and ARL.
Similar to Pascal VOC, all these metrics are averaged over
all novel categories in our experiments.
Evaluation with Multiple Repeated Runs. More and
more researchers have realized that few-shot object detec-
tion performance often comes with a large variance. The
lower the number of shots, the more unstable the results
are. This is because few-shot detection performance relies
heavily on the quality of the training samples for novel cat-
egories. Therefore, with results from a single run, it is not
easy to draw convincing conclusions. To address this is-
sue, following [72] and [80], our results, as reported in Ta-
ble 1-5, are averaged over multiple repeated runs with dif-
ferent randomly sampled support datasets. Specifically, as
we observe large performance variances in Pascal VOC, es-
pecially for 1-shot, 2-shot, and 3-shot, all our results on Pas-
cal VOC are averaged over 10 randomly sampled support
datasets. For MS COCO, we observe smaller variances with
repeated runs, which can be attributed to the larger number
of categories and shots. Therefore, we average our results
on MS COCO over 5 randomly sampled support datasets.

6.5. Inference Speed of Meta-DETR

During inference, the category codes for all base
and novel categories can be computed once and for all.
This enables efficient inference of Meta-DETR. Table 7
presents the inference speed of Meta-DETR and De-
formable DETR [96]. We can see that Meta-DETR only
introduces moderate extra computational costs as compared
with the naive fine-tuning approach.

6.6. Qualitative Results

We provide multiple qualitative visualizations of Meta-
DETR’s few-shot detection results in Figs. 8-15, which give
a straightforward illustration of the performance of our
method. Note that only detection results of novel categories
are presented, as the major focus is to detect objects of novel
categories. In addition, we only show results with confi-
dence scores higher than 0.3. White boxes indicate correct
detections, red solid boxes indicate false positives, and red
dashed boxes indicate false negatives. It can be observed
that the proposed Meta-DETR is able to detect novel objects
even with scarce training samples. In addition, Meta-DETR
performs exceptionally well on large objects and we will in-
vestigate how to handle small objects and cluttered objects
in our future research.
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Figure 8. Visualization of multi-scale Meta-DETR’s 10-shot object detection results on Pascal VOC category split 1. Novel categories
include bird, bus, cow, motorcycle, and sofa. For simplicity, only results of novel categories are illustrated. White boxes indicate correct
detections. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.
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Figure 9. Visualization of multi-scale Meta-DETR’s 10-shot object detection results on Pascal VOC category split 1. Novel categories
include bird, bus, cow, motorcycle, and sofa. For simplicity, only results of novel categories are illustrated. White boxes indicate correct
detections. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.
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Figure 10. Visualization of multi-scale Meta-DETR’s 10-shot object detection results on Pascal VOC category split 2. Novel categories
include airplane, bottle, cow, horse, and sofa. For simplicity, only results of novel categories are illustrated. White boxes indicate correct
detections. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.
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Figure 11. Visualization of multi-scale Meta-DETR’s 10-shot object detection results on Pascal VOC category split 2. Novel categories
include airplane, bottle, cow, horse, and sofa. For simplicity, only results of novel categories are illustrated. White boxes indicate correct
detections. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.
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Figure 12. Visualization of multi-scale Meta-DETR’s 10-shot object detection results on Pascal VOC category split 3. Novel categories
include boat, cat, motorcycle, sheep, and sofa. For simplicity, only results of novel categories are illustrated. White boxes indicate correct
detections. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.
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Figure 13. Visualization of multi-scale Meta-DETR’s 10-shot object detection results on Pascal VOC category split 3. Novel categories
include boat, cat, motorcycle, sheep, and sofa. For simplicity, only results of novel categories are illustrated. White boxes indicate correct
detections. Red solid boxes indicate false positives. Red dashed boxes indicate false negatives.
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Figure 14. Visualization of multi-scale Meta-DETR’s 30-shot object detection results on MS COCO. Novel categories include person,
bicycle, car, motorcycle, airplane, bus, train, boat, bird, cat, dog, horse, sheep, cow, bottle, chair, couch, potted plant, dining table, and
tv. For simplicity, only results of novel categories are illustrated. White boxes indicate correct detections. Red solid boxes indicate false
positives. Red dashed boxes indicate false negatives.
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Figure 15. Visualization of multi-scale Meta-DETR’s 30-shot object detection results on MS COCO. Novel categories include person,
bicycle, car, motorcycle, airplane, bus, train, boat, bird, cat, dog, horse, sheep, cow, bottle, chair, couch, potted plant, dining table, and
tv. For simplicity, only results of novel categories are illustrated. White boxes indicate correct detections. Red solid boxes indicate false
positives. Red dashed boxes indicate false negatives.
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